15 Bài tập Nhị thức Newton (có đáp án) - Cánh diều Trắc nghiệm Toán 10
Haylamdo biên soạn và sưu tầm với 15 bài tập trắc nghiệm Nhị thức Newton Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Cánh diều sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
15 Bài tập Nhị thức Newton (có đáp án) - Cánh diều Trắc nghiệm Toán 10
Câu 1. Trong khai triển nhị thức (a + 2)n - 5 (n ℕ). Có tất cả 6 số hạng. Vậy n bằng
A. 17;
B. 21;
C. 25;
D. 11.
Câu 2. Khai triển các biểu thức sau: (a + 2)4 là:
A. a4 + 24;
B. a4 + 2a2b2 + 24;
C. a4 + 8a3 + 24a2 + 32a + 16;
D. a4 + 32a3 + 24a2 + 8a + 16.
Câu 3. Trong các phát biểu sau, phát biểu nào sai?
A. ;
B. ;
C. ;
D. .
Câu 4. Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là:
A. 32x4;
B.240x4;
C. 720;
D. 240.
Câu 5.Hệ số của x5 trong khai triển của (5 – 2x)5 là
A. 400;
B. – 32;
C. 3 125;
D. – 6 250.
Câu 6.Tổng hệ số của x3 và x2 trong khai triển (1 + 2x)4 là :
A. 24;
B. 44;
C. 20;
D. 54.
Câu 7.Trong khai triển nhị thức (2a + 1)5 ba số hạng đầu là:
A. 32a5 + 40a4 + 10a3;
B. 80a5 + 80a4 + 40a3;
C. 32a5 + 80a4 + 40a3;
D. 32a5 + 80a4 + 80a3.
Câu 8. Khai triển nhị thức (x + y)4 ta được kết quả là:
A. x4 – 4x3y + 6x2y2 – 6xy3 + y4;
B. x4 + 4x3y + 6x2y2 + 6xy3 + y4;
C. x4 + 4x3y + 8x2y2 + 8xy3 + y4.
D. x4 – 4x3y + 8x2y2 - 8xy3 + y4.
Câu 9.Trong khai triển (x + 2y)5 số hạng chứa x2y3 là:
A. 80x2y3;
B. 40x2y3;
C. 80;
D. 10.
Câu 10.Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?
A. k là một số tự nhiên;
B. k là một số nguyên âm;
C. k là một số nguyên dương;
D. k = 0.
Câu 11.Cho số tự nhiên n thỏa mãn . Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng
A. – 4320;
B. – 1440;
C. 4320;
D. 1080.
Câu 12. Khai triển nhị thức (2x + 3)4 ta được kết quả là
A.x4 + 216x3 + 216x2 + 96x + 81;
B.16x4 + 216x3 + 216x2 + 96x + 81;
C.16x4 + 96x3 + 216x2 + 216x + 81;
D.x4 + 96x3 + 216x2 + 216x + 81.
Câu 13.Với n là số nguyên dương thỏa mãn , hệ số của x5 trong khai triển của biểu thức bằng
A. 0;
B. 8;
C. 20;
D. 32.
Câu 14. Tính giá trị biểu thức
A. ;
B.;
C.;
D..
Câu 15. Với n là số nguyên dương thỏa mãn . Trong khai triển biểu thức (x3 + 2y2)n, gọi Tk là số hạng mà tổng số mũ của x và y của số hạng đó bằng 11. Hệ số của Tk là
A. 1;
B. 8;
C. 20;
D. 16.
Câu 1:
Trong khai triển nhị thức (a + 2)n - 5 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
A. 17;
B. 21;
C. 25;
D. 11.
Xem lời giải »
Câu 2:
Khai triển các biểu thức sau: (a + 2)4 là:
A. a4 + 24;
B. a4 + 2a2b2 + 24;
C. a4 + 8a3 + 24a2 + 32a + 16;
D. a4 + 32a3 + 24a2 + 8a + 16.
Xem lời giải »
Câu 3:
Trong các phát biểu sau, phát biểu nào sai?
A. \({\left( {a + b} \right)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\);
B. \({\left( {a - b} \right)^4} = {a^4} - 4{a^3}b + 6{a^2}{b^2} - 4a{b^3} + {b^4}\);
C. \({\left( {a + b} \right)^4} = {b^4} + 4{b^3}a + 6{b^2}{a^2} + 4b{a^3} + {a^4}\);
D. \({\left( {a + b} \right)^4} = {a^4} + {b^4}\).
Xem lời giải »
Câu 4:
Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là:
A. 32x4;
B. 240x4;
C. 720;
D. 240.
Xem lời giải »
Câu 5:
Hệ số của x5 trong khai triển của (5 – 2x)5 là
A. 400;
B. – 32;
C. 3 125;
D. – 6 250.
Xem lời giải »
Câu 6:
Tổng hệ số của x3 và x2 trong khai triển (1 + 2x)4 là :
A. 24;
B. 44;
C. 20;
D. 54.
Xem lời giải »
Câu 7:
Trong khai triển nhị thức (2a + 1)5 ba số hạng đầu là:
A. 32a5 + 40a4 + 10a3;
B. 80a5 + 80a4 + 40a3;
C. 32a5 + 80a4 + 40a3;
D. 32a5 + 80a4 + 80a3.
Xem lời giải »
Câu 8:
Khai triển nhị thức (x + y)4 ta được kết quả là:
A. x4 – 4x3y + 6x2y2 – 6xy3 + y4;
B. x4 + 4x3y + 6x2y2 + 6xy3 + y4;
C. x4 + 4x3y + 8x2y2 + 8xy3 + y4.
D. x4 – 4x3y + 8x2y2 - 8xy3 + y4.
Xem lời giải »
Câu 9:
Trong khai triển (x + 2y)5 số hạng chứa x2y3 là:
A. 80x2y3;
B. 40x2y3;
C. 80;
D. 10.
Xem lời giải »
Câu 10:
Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?
A. k là một số tự nhiên;
B. k là một số nguyên âm;
C. k là một số nguyên dương;
D. k = 0.
Xem lời giải »
Câu 11:
Cho số tự nhiên n thỏa mãn \[A_n^2 + 2C_n^n = 22\]. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng
A. – 4320;
B. – 1440;
C. 4320;
D. 1080.
Xem lời giải »
Câu 12:
Khai triển nhị thức (2x + 3)4 ta được kết quả là
A. x4 + 216x3 + 216x2 + 96x + 81;
B. 16x4 + 216x3 + 216x2 + 96x + 81;
C. 16x4 + 96x3 + 216x2 + 216x + 81;
D. x4 + 96x3 + 216x2 + 216x + 81.
Xem lời giải »
Câu 13:
Với n là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 10\), hệ số của x5 trong khai triển của biểu thức \({\left( {{x^3} + \frac{2}{x}} \right)^n}\) bằng
A. 0;
B. 8;
C. 20;
D. 32.
Xem lời giải »
Câu 14:
Tính giá trị biểu thức \(T = C_4^0 + \frac{1}{2}C_4^1 + \frac{1}{4}C_4^2 + \frac{1}{8}C_4^3 + \frac{1}{{16}}C_4^4\)
A. \(\frac{3}{2}\);
B. \(\frac{9}{{16}}\);
C. \(\frac{{81}}{{16}}\);
D. \(\frac{{27}}{{16}}\).
Xem lời giải »
Câu 15:
Với n là số nguyên dương thỏa mãn \(3C_{n + 1}^3 + A_n^2 = 14\left( {n - 1} \right)\). Trong khai triển biểu thức (x3 + 2y2)n, gọi Tk là số hạng mà tổng số mũ của x và y của số hạng đó bằng 11. Hệ số của Tk là
A. 1;
B. 8;
C. 20;
D. 16.
Xem lời giải »
Câu 1:
Cho biểu thức (a + b)n , với n = 4 ta có khai triển là:
A. (a + b)4 = \(C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} + C_4^3a.{b^3} + C_4^4.{b^4}\);
B. (a + b)4 = \(C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\);
C. (a + b)4 = \(C_4^0{a^4} - C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} - C_4^3a.{b^3} + C_4^4.{b^4}\);
D. (a + b)4 = \( - C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\).
Xem lời giải »
Câu 2:
Hệ số của x3 của khai triển (x – 1)4 là:
A. 1;
B. 4;
C. – 4;
D. 6.
Xem lời giải »
Câu 3:
Khai triển biểu thức (a + 2b)5 ta thu được kết quả là:
A. a5 + 10a4b + 40a3b2 + 80a2b3 + 80ab4 + 32b5;
B. a5 – 10a4b – 40a3b2 – 80a2b3 – 80ab4 – 32b5;
C. a5 + 20a4b + 30a3b2 + 80a2b3 + 80ab4 + 32b5;
D. a5 + 10a4b + 40a3b2 + 60a2b3 + 60ab4 + 32b5.
Xem lời giải »
Câu 4:
Khai triển biểu thức (x + 1)4 ta thu được kết quả là:
A. x4 + 5x3 + 6x2 + 4x + 1;
B. x4 + 4x3 + 6x2 + 4x + 1;
C. 6x4 + 4x3 + 2x2 + 4x + 1;
D. 4x4 + 4x3 + 6x2 + 6x + 1.
Xem lời giải »
Câu 5:
Hệ số của x2 trong khai triển (x + 1)5 là:
A. 10;
B. 15;
C. 30;
D. 45.
Xem lời giải »
Câu 6:
Xét khai triển của (2x + 12)4. Số hạng không chứa biến x của khai triển là:
A. 12;
B. 124;
C. 128;
D. 2.128.
Xem lời giải »
Câu 7:
Tìm hệ số của x3 trong khai triển (x – 2)5 bằng:
A. \( - 4C_5^2\);
B. \(4C_5^2\);
C. \(8C_5^2\);
D. \( - 8C_5^2.\)
Xem lời giải »
Câu 1:
Khai triển nhị thức (2x + y)5. Ta được kết quả là
A. 32x5 + 16x4y + 8x3y2 + 4x2y3 + 2xy4 + y5;
B. 32x5 + 80x4y + 80x3y2 + 40x2y3 + 10xy4 + y5;
C. 2x5 + 10x4y + 20x3y2 + 20x2y3 + 10xy4 + y5;
D. 32x5 + 10 000x4y + 80 000x3y2 + 400x2y3 + 10xy4 + y5.
Xem lời giải »
Câu 2:
Xét khai triển của \({\left( {2x + \frac{1}{2}} \right)^4}\). Gọi a là hệ số của x2 và b là hệ số của x trong khai triển. Tổng a + b là:
A. 5;
B. 6;
C. 7;
D. 8.
Xem lời giải »
Câu 3:
Trong khai triển của nhị thức (x – y)5, hệ số của x3.y3 là;
A. Không tồn tại;
B. 15;
C. 10;
D. 12.
Xem lời giải »
Câu 4:
Tổng các hệ số trong khai triển \(P\left( x \right) = {\left( {1 + x} \right)^5}\) là:
A. 30;
B. 31;
C. 32;
D. 33.
Xem lời giải »
Câu 5:
Tìm số hạng chứa x3 trong khai triển \[{\left( {x + \frac{1}{{2x}}} \right)^5}\].
A. \(\frac{5}{2}{x^3}\);
B. –\(\frac{5}{2}{x^3}\);
C. \(\frac{5}{4}{x^3}\);
D. –\(\frac{5}{4}{x^3}\).
Xem lời giải »
Câu 6:
Tìm hệ số của x2 trong khai triển \({\left( {3x - \frac{1}{{3{x^2}}}} \right)^5}\).
A. 135;
B. 120;
C. – 135;
D. – 130.
Xem lời giải »
Câu 7:
Trong khai triển \({\left( {x - \sqrt y } \right)^4}\), tổng của các số hạng chứa x4 và y2 là:
A.\({x^4} + 2{y^2}\);
B.\({x^4} - {y^2}\);
C.\({x^4} + {y^2}\);
D.\( - {x^4} - {y^2}\).
Xem lời giải »
Câu 8:
Cho biểu thức \({\left( {\sqrt {xy} + \frac{x}{y}} \right)^5}\) (x; y luôn dương). Gọi hệ số của x3y là a và hệ số của \(\frac{{{x^3}}}{y}\) là b. Tính a – b?
A. – 5;
B. – 10;
C. 5;
D. 10.
Xem lời giải »
Câu 1:
Gọi Tk là số hạng thứ k trong khai triển (x3 + 2y2)5 mà số mũ của x và y bằng nhau. Hệ số của Tk là:
A. 32;
B. 10;
C. 80;
D. 32.
Xem lời giải »
Câu 2:
Cho \({\left( {x\sqrt x + \frac{1}{{{x^4}}}} \right)^n}\)với x > 0 và \(C_n^2 - C_n^1 = 2\). Số hạng có số mũ thấp nhất của khai triển là:
A.\(\frac{{\sqrt x }}{{{x^{11}}}}\);
B. 4\(\frac{{\sqrt x }}{{{x^{11}}}}\);
C.\(\frac{1}{{{x^{16}}}}\);
D. 4\(\frac{1}{{{x^5}}}\).
Xem lời giải »
Câu 3:
Tìm hệ số của x5 trong khai triển (1 + x + x2 + x3)5.
A. 50;
B. 100;
C. 101;
D. 200.
Xem lời giải »
Câu 4:
Cho n > 2 là số nguyên dương thỏa mãn \(3C_n^2 + 2A_n^2 = 3{n^2} - 5.\) Số hạng không chứa x trong khai triển \({\left( {2{x^3} - \frac{3}{{{x^2}}}} \right)^n},x \ne 0.\)
A. – 1 080;
B. 1 080;
C. 1 008;
D. – 1 008.
Xem lời giải »
Câu 5:
Khai triển \({(\sqrt 3 - \sqrt[4]{5})^5}\). Tổng các số hạng hữu tỉ trong khai triển trên?
A. 12;
B. 14;
C. 20;
D. 22.
Xem lời giải »